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The stochastic realization problem asks for the existence and the classification of all stochastic systems
for which the output process equals a given process in distribution or almost surely. This is a fundamen-
tal problem of system and control thcory. The stochastic realization problem is of importance to model-
ling by stochaslic systems in engineering, biology, economics etc. Several stochastic systems are men-
tioned for which the solution of the stochastic realization problem may be uselul. As an example recent
research on the stochastic realization problem for the Gaussian factor model and a Gaussian factor sys-
tem is discussed.

This paper is dedicated to J. C. Willems on the occasion of his fiftieth birthday.

1. INTRODUCTION

The purpose of this paper is to introducc the reader to stochastic realization theory. This will be
donc by presentation of a verbal introduction, a survey of Gaussian stochastic realization theory,
formulation of open stochastic realization problems, and a discussion of the stochastic realization
problem for Gaussian factor models. This tutorial and survey-like paper is written for rescarchers
in system and control theory, but may also be of intcrest to rescarchers dealing with mathematical
modcls in engincering, biology, and cconomics.

The Kalman filter and stochastic control algorithms have proven to be very uscful for those
control and signal processing problems in which there is a considcrable amount of noisc in the
obscrvation processes. Examples of such problems arc: minimum variance control of a paper
machine, access control of communication systems, and prediction of water levcls. The solution of
stochastic control and filtering problems depends crucially on the availability of a modecl in the
form of a stochastic system in state space form. There is thus a nced for modclling and realization
of noisy processcs by stochastic systems. Stochastic realization theory addresses this modclling
problem.

System and control theory is the subject within engincering and mathematics that deals with
modeclling and control problems for dynamic processcs or phenomcena. Such a phenomenon may
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initially be described by specifying the observation process or trajectorics, which description will
be termed the external description. For reasons of modeclling and control it is often better to work
with an internal description. The form of such an internal description depends on the properties of
the observation process. For deterministic linear systems it may be a description in state space
form. The state of such a system at any particular time contains all information from the past
nccessary to determine the future behavior of the state and output process. For stochastic systems
the internal description is a stochastic system in state spacc form. Here the state is that amount of
information that makes the past and the future of the observations and the state process condi-
tionally independent. For a vector valued random variable onc may consider the internal descrip-
tion of a Gaussian factor model, sce scction 5. For models of images and spatial phenomena in
the form of random ficlds, other internal descriptions are nceded.

The realization problem of system theory can then be formulated as how to determine an
internal description of a model given an external description. Motivation for this problem comes
from cngincering, in particular from system identification and signal processing, from biology,
and from cconometrics. In these subject arcas one may want to estimate parameters of the internal
description from obscrvations. The question should then be posed whether these parameters can
be uniquely determined from the observations, that is whether they arc identifiable. This question
may be resolved by solution of the realization problem. First one must impose the condition that
the model is minimal in some sense. The concept of minimality will depend on the class of internal
descriptions. Sccondly, there is in gencral no unique internal description for a phenomenon given
an cxternal description. The realization problem thercfore also asks for a classification of all
minimal internal descriptions that correspond to a given cxternal description. Such internal
descriptions may be called cquivalent. Once the equivalence class has been determined one may
choosc a canonical form for it. From that point on standard techniques from system identification
and statistics may bc uscd to determine the internal description of the model. The part of system
theory that deals with modelling questions is referred to as realization theory. It treats topics such
as transformations between representations, paramctrization of model classes, identifiability ques-
tions, and approximate modclling.

A bricf description of this paper’s content follows. Section 2 contains a verbal introduction
to the modclling procedure of system theory. In scetion 3 a tutorial is presented on Gaussian sto-
chastic realization theory. Several cxamples of stochastic systems for which the stochastic rcaliza-
tion problem is open and relevant for engineering and cconomics, are mentioned in scctiqn 4. As
an cxamplc the stochastic realization problem for the Gaussian factor analysis modcl is discussed
in scction 5, and for Gaussian factor systems or crror-in-variables systems in scction 6.

2. MODELLING AND SYSTEM THEORY

2.1, Introduction . o ;
As identified in the previous scction there is a need for stochastic models of engincering an
cconomic phenomena. The purpose of this section is to describe the modelling procedure of sys-
tem and control theory. Particular attention will be devoted to modelling of economic processcs.

2.2. The modelling procedure ) . L
It is assumed that data, possibly in the form of time series, arc available for the modcllcr.‘ t.lS
arc casy to obtain in the technical sciences but hard to obtain in

well-recognized that uscful data :
cxperiments are often

cconomics. Onc rcason is that cconomics is not a laboratory science;
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impossible or if possiblc cannot be repeated. Also data gathering is much more expensive in
cconomics than in the technical sciences.

The objcctive of modelling is to obtain a model for a phenomenon that is realistic and of low
complexity. A model is called realistic if its obscrved behaviour is in close agreement with the
phenomenon, A measure of fit for this agreement has to be formulated. The term low complexity
should be considered as in ordinary use. A mathematical definition of this term is very much
modcl dependent. Models of high complexity arc mathematically not well analyzable and compu-
tationally not feasible. The two modelling objectives mentioned are contlicting. Therefore a
compromisc or tradc-off between these objectives is necessary.

The preferred modelling procedure consists of the following two steps:

- sclection of a model class;

- sclection of an clement in the model class involving the above mentioned trade-off.

This procedurc must be applied in an iterative fashion. If the selected clement in the model class is
not a realistic model then the model class may be adjusted. The two steps of this procedure will
now bc discussed separatcly.

2.3. Selection of a model class

In the sclection of a model class onc has to kecp in mind the objectives of a realistic model and a
model of low complexity. The selection procedure demands application of concepts and results
both from the rescarch arca of the object to be modelled, and from system and control theory.

The formulation of realistic cconomic models is difficult for several reasons. One rcason is
that cconomic transactions involve muitiple dccisionmakers compared with a single decision-
maker in most engincering problems. The appropriate mathematical models are therefore game
and tcam models and their dynamic counterparts. The status of dynamic game and tcam theory is
not yct at a level at which a body of results is availablc for applications. A sccond rcason, closcly
rclated to the first, is that a decisionmaker must also model the decisionmaking proccss of the
other decisionmakers. This remark is well-known in the literature on stochastic dynamic games.
The discussion about rational expectation also illustrates this point. A third rcason is that the
rules of the cconomic process change quickly compared with the periods over which economic
data arc available. Assumptions of time-invariance or stationarity are often unrealistic.

In system thcory a formalism has been developed for the formulation of mathcematical
modecls of dynamic phenomena and for a modelling procedure. For a dynamic phenomenon in the
form of a time scrics a preferred deterministic model is called a dynamic system in state space
form. Onc distinguishes inputs and outputs of such a system, and a state process. The szate of a
dynamic system at any particular time is that amount of information that together with the future
inputs completely determines the future outputs. The trajectorics of the input, output and state
proccss arc the basic objects of a dynamical system. The reader is referred to [78] for material on
lincar systems.

Stochastic systems have proven to be uscful models in several arcas of engincering such as
signal processing, communications and control. Within economics they are used for cxample in
conncction with portfolio theory. In stochastic system theory, probability theory is used as a
mathematical model for uncertainty. A stochastic system is specificd by a measure on the space of
trajectorics. This is a fundamental difference between deterministic and stochastic systcms. For a
stochastic system without inputs the statc at any particular time makes the past and thc futurc of
the output and state processes conditionally independent. Despite the fact that a stochastic system
is specified by a measurc, the representation in terms of trajectories, for cxample by a stochastic
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differential equation, is crucial to the solution of control and filtering problems.

Why are stochastic models realistic in certain cases? Within cconomics reasons for this are

that such modclling involves:

- aggregation over many decisionmakers;

- uncertainty over future actions of other decisionmakers;

- uncertainty in the mecasurement process, due to vaguc definitions and averaging,

Remark that the costs involved often prevent the gathering of full information. Therefore aggrega-
tion must be used. The variability of the data then suggests a stochastic model. This author is not
optimistic about the applicability of stochastic models to cconomic phenomena. Reasons for this
are the relatively short time serics and the frequent change in structural relations.

Should onc usc a dcterministic or a stochastic model class to model a certain phenomenon?
What is nccded is a criterion to decide whether for a specific phenomenon the class of determinis-
tic systems or that of stochastic systems is the appropriate modecl class.

A crucial observation from system theory is that the choice of model class is all-important. Of
course, a modcl must be realistic and of low complexity. But within these constraints there is left
somc frecdom in the mathematical formulation of the model. Given this freedom it is advisable to
choosc a model class for which the motivating control problem is analytically tractable. An exam-
ple of such a choice is the Gaussian system that Icads to the Kalman filter. Filtering theory was
formulated by N. Wicncer and A.N. Kolmogorov for stationary Gaussian processcs. R. E. Kalman
restricted attention to a particular class of stationary Gaussian processes, thosc gencrated by
linear stochastic systems driven by white noise. For this class of systems the solution of the filter-
ing problem has proven to be straightforward. That this class may be extended to include non-
stationary processcs is then a uscful corollary. How is this obscrvation to be used in cconomic
modeclling? As suggested by R. Li. Kalman, a dctailed study must be made of cconomic models
that arc published in the litcrature to scc whether changes in the mathematical formulation of
these modcls are advantageous for the solution of control problems. The sciection of the model
class sccms a creative process that involves knowledge of both the rescarch arca of the
phenomenon to be modeclled and of system theory.

For stochastic processcs indexed by the real line the model class of stochastic systems scems
an appropriatec modcl. Sce section 3.1 for a definition of this concept. For a vector of random vari-
ables the modecl class of Gaussian factor models may be uscful, scc scction 5. For random ficlds it
is not yct clcar what the appropriatc model class should be.

Once the modecl class has been determined, the modelling procedure prescribes the solution
of the stochastic rcalization problem. In scction 3 this problem is formulated and the solution
shown for the casc of Gaussian proccsses.

2.4. Selection of an element in the model class

Given the data and the model class, the problem arises of how to sclect an clement in the model
class. As indicated carlicr, the sclection of a model is a trade-ofl between the objective of a realis-
tic model and the objective of a model with low complexity. [For dcterministic dynamical systems
results on the sclection of an clement in the model class arc reported in [35, 79].

IFor stochastic systems a formalism for the sclection of an clement in the class of stochastic
systems is described below. Consider first a measurc of fit between the observations of the
phcnomenon and the external behaviour of a stochastic system. Recall that the observations con-
sist of numbers whilc the external behaviour consists of a measure on the sample space of obscrva-
tion trajectorics. The way to proceed is to usc thc observations, the numbers, to estimate the
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measurc on the sample space of obscrvation trajectorics. In casc this mcasure is Gaussian and the
observation process is stationary it suttices to cstimate the mcan and covariance function of this
measure.

Onc can definc a measure of fit between the measure for the output trajectorics estimated
from obscrvations and the mcasurc associated with the external description of the system. Exam-
ples of such a measure are the Kullback-Leibler measurc and the Hellinger measure; see scction
3.7

For stochastic systems onc also nceds a measure of complexity. A stochastic complexity
measure introduced by J. Rissanen [60-64] scems the appropriatc tool for this purpose. Stochastic
complexity is based on A.N. Kolmogorov’s complexity theory. Since this subject is well covered
elsewhere the reader is referred to the indicated references.

The actual sclection procedure given data, a model class, and measures of fit and complexity,
consists then of a combination of analysis and numerical minimization. The details of this will not
be discussed here.

3. GAUSSIAN STOCHASTIC REALIZATION

The purposc of this section is to present the modelling procedure for Gaussian processes. In this
tutorial part of the paper results for the Gaussian stochastic realization problem arc summarized.
For a reference on the weak Gaussian stochastic realization problem sec the book [24] and for a
shorter introduction in the English language [23]. IFor a survey of the strong Gaussian stochastic
rcalization problem sce [47].

Notation

The following notation is used. N={0,1,2,---}. Z, =(1,2,---}. Z={---,—10,1,---}.
Z,={1,2,--- k). R denotes the sct of real numbers, and R, =[0,00). For a probability spacc
(R, F, P) consisting of a sct , a g-algebra F and a probability measure P, denote

L7 (F) = {(x:Q-R ., | x is a random variable measurable with respect to I}

x €G(0,Q) denotes that the random variable x has a Gaussian distribution with mean zero and
variance Q.

For a stochastic process y:Q2X T—R* the following notation is uscd for the o-algebra’s gen-
crated by the process Fi =F} =o({y(s),Ys<<t})and F} ' =o({y(s),Vs=1)).

DEFINITION 3.0.1. The o-algebra’s Iy, F are called conditionally independent given the o-algebra
Gif

Elz12;|G) = E[z2|G)E[z7| G]
Sforall z; €L " (F,). The notation

(F1,Fy|6)ed

will be used to denote that F,F, are conditionally independent given G and CI will be culled the con-
ditional independence relation.
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3. 1. Stochastic systems and Gaussian systems
The purpose of this scction is to definc stochastic dynamic systems. Attention is restricted to

discrete-time stochastic dynamic systems. Stochastic systems with inputs will not be considered
here.

A motivation for the definition of a discrete time stochastic dynamic system follows. Con-
sider the object that is usually called a stochastic system,

Xea1 = Ax, + My, xg, (3.1.1)
Jr = Cxp + Ny, (3.1.2)

where xo:Q0—R",x; €G(m¢,Qy), vi@XT—-R™ is a Gaussian whitc noise process with
v, €G(0,V), F'° F%. arc indcpendent o-algebras, A R4 M €R"*™ CERPX", N ERP*™,
x:@XT-R" and y:Q X TR’ defined by the above equations. It may be shown that this object
is cquivalent with the object specified by:

X9 €G (my,Qy): (3.1.3)

b (AX o
.. ., _ i 1 ' 1
Elexpliu®x, ,y tiw!y) | FY VE l]:cxp(i[:f,] [C\,l}«‘/z[;{] S[f:]) (3.1.4)

for all 1 €T and some § €R /™" P Observe that the conditional characteristic function of
(x; q.00) given (F7 Vv F] ) depends only on the random variable x;. 1t then follows that

ElexpGiulx,  y+iw Ty )| Fy VE ] = Elexpliu?x, , +iwTy) | FY) (3.1.5)

for all t €T. A stochastic dynamic system could now be defined as a state process x and an out-
put proccss y such that for all r € 7" thereis a map

X e distribution of (x, 1, y,)

This dcfinition may be found in [42; p. 5]. Bclow a different definition will be adopted. It may be
shown that (3.1.5) is equivalent with the condition that for all 1 7T

(Fy " VY FY  VES |[FMec,

where /7' =o({x,,V s=1)), I} =0o({x,.V s<t}), and similar definitions for /] ' ,F} . The
property that the past and future of the state and output proccss arc conditionally independent
given the current state will be taken as the definition of a stochastic dynamic system.

DEFINITION 3.1.1. A discrete-time stochastic dynamic system is a collection
0= (FPTY, By, X, By,p,x ),

where
(Q.F. P} is a complete probability space;
T =2, to be called the time index sct;
(Y.By) is a measurable space, to be called the output spacc;
(X,By) is a measurable space, to be called the state space.
yI QX T—Y is astochuastic process, to be culled the output process;
XX T X is a stochustic process, to be called the state process;
such that forallt €T
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(FY ' VE T F O VEST | FY)ECH (3.1.6)

A stochastic dynamic system on T CZ is defined analogously. The class of stochastic systems is
denoted by SX.

The above definition of a stochastic dynamic system is based on rclated concepts given in
[48,52,72,73).
From the dcfinition of a stochastic dynamic systcm onc obtains that thc statec process

satisfics the condition
(FY L FY [ FMYed]

for all # €7. This is cquivalent with x being a Markov process. Markov processcs arc thus also
stochastic dynamic systems, and the latter class thus contains thc classical model of state
processcs.

The defining condition of a stochastic dynamic system is more or less symmetric with respect
to time in the past and future of the state and output process. This is an advantage over the asym-
metric formulation given in the representation (3.1.1) and (3.1.2).

The condition (3.1.6) is asymmetric with respect to the output process. This is a convention.
A priori there arc four possible conditions for a stochastic dynamic system which arc listed below:

(Fy ' VIFFVES |FYECI VIET, (3.1.7.1)
(FE . VEY VT | FY)ECT YLET; (3.1.7.2)
(FY ' VEFS U FL\VEF |FY)YeCI YIET; (3.1.7.3)
(Fy\VEFF L FVE |FY)eC] YiET (3.1.7.4)

Condition (3.1.7.1) and a property of conditional expcctation imply that
FrC(F CVE )CFT

which fact is not compatiblc with the intuitive concept of statc in that the output is in gencral not
part of the state. Condition (3.1.7.2) is not suitable becausc it would allow cxamiples that arce
counter-intuitive to the concept of state, scc example 3.1.6. The conditions (3.1.7.3) and (3.1.7.4)
thus remain, of which condition 3 has been chosen. This is a convention. Condition (3.1.7.4)
results in the representation

Xpy 1 = AX, + MV,,
Y1 = Cxp 4 Ny,

which form is inconsistent with the system theoretic convention of (3.1.1 & 3.1.2). The option of
taking condition (3.1.7.3) or (3.1.7.4) in the dcfinition of a stochastic dynamic systcem is related to
the option of considering Moore or Mcaley machines in automata theory, see [50; . A.2].

The dcfinition of a stochastic system is formulated in terms of o-algebras rather than in
terms of stochastic processes. This is a gcometric formulation in which emphasis is put on spaces
and subspaccs rather than on the variables or processcs that gencrate thosc spaces.

DEFINITION 3.1.2. Given a stochastic dynamic system

o= (L EPT,Y, By, X By.px} ESE.
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This system is called:

a.  stationary or time-invariant if (x,y) is a jointly stationary process;

b. Gaussian if Y=R?, X=R" for certainp,n€Z ,, By=BP and Bxy=DB" are Borel o-algebras
on Y respectively X, and if (x,y) is a jointly Gaussian process; by way of abbreviation, a Gaus-
sian stochastic dynamic system will be called a Gaussian system and the cluss of such systems is
denoted by GSZ;

c. finite if Y, X are finite sets and By, By are the o-algebras on Y, X generated by all subsets; by
way of abbreviation a finite stochastic dynamic system will be called a finite stochastic system
and the cluss of such systems is denoted by FSZ.

ProposiTION 3.1.3. Consider a collection

(QFEP,T,Y,By,X,By,y,x}

as defined in 3.1.1 but without condition (3.1.6). The Sfollowing statements are equivalent:
a. forallt€T

(5 VESFY L VEP | FYYEcr
b. fol‘ allt €T

(1‘,_“\/]'..\, [l 1, I; . \/1',\ I II\I)ECI‘
C. fora//t ET

(FVES D R R FYYeC

The following result is a uscful sufficient condition for a stochastic dynamic system.

ProrosiTION 3.1.4. Consider the collection
o= {FPTY By X Byyx)}

as defined in 3.1.1 but without condition (3.1.6). If forall t €T
L(F R, VE [ FYYECT

2 F VE

T FYeECs;

then 0 €SS,
Below two cxamples of stochastic dynamic systems arc presented.

ExampLe 3.1.5. Consider a Gaussian system representation
Xy = Axg + My, (3.1.8)
¥ = Cx, -+ Ny, (3.1.9)

with the conventions given below (3.1.1 & 3.1.2). As indicated there this representation is
cquivalent with

Elexpliu"x, +iwTy) | FF V) )
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wlg's (e

forallt €T and xy €G. This and a property of conditional indecpendence imply that

Ax,

_ (a7
= expli [w] Cx,

(FY“''"WF' F\VF |FYeCLYteT,
and from 3.1.3 then follows that, with x,y specified by (3.1.8 & 3.1.9),
o= {QFPT,R B/ R"B" p,x}ESZ

FFrom propertics of Gaussian random variables follows that (x,p) is a jointly Gaussian process,
hence ¢ is a Gaussian systcm or s €GSZ. In the following (3.1.8 & 3.1.9) will be called a forward
representation of a Gaussian system.

ExaMPLE 3.1.6. Let vi2XT—R be a standard Gaussian white noisc process. Define y :Q X T—R,
x QX T-R by
Np = o =Xy =+ v

Then the following hold.

a. Forallt €T (¥ /1,F} "1 |N)ECI, where N CF is the trivial g-algebra. Thus the process y is
the output process of a stochastic dynamic system according to (3.1.7.2) with a trivial state
spacc.

b. Forallre”r

Elexp(ivy) | Fy "1]

is nondeterministic, indicating that the process y has some kind of memory.

(Fy ' VEFY F  VEST [ FYYeCT
forallt €T, hence

o= {(QIPTYBXByx}EGST.

3.2, Forward und backward representations of Gaussian systems
The purposc of this subscction is to show that a Gaussian system has both a forward and a back-
ward representation, and to derive rclations between these representations.

ProprosITION 3.2.1. Let
o= {(QFPT,R BPR"B" p,x} €EGSZ

be a  Gaussian system.  Assume that  for all t€T Elx])=0, E[y,]=0 and that
O:T-R"™" Q)= E[x,x]]>0.
a.  The Gaussian system has what will be called a forward representation given by

X1 = AlOx, + Myl xg, (3.2.1)
= CHx, + Ny, (3.2.2)
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where v/:QX T—R" ' ¥ is a Gaussian white noise process with intensity V/. Given o then
Al(r) = Elx, ix[10(0) 1,
oy = Epl1®

Q(t + 1) E[x{ + ],y;r] [Af(t)

Sy — N "
Vi) Eb,lx’[ v1) E[)"l)'ll] Cf(t)

0w ! [<Af(z»"' (Cf(z»"‘],

M = (I,0)ER"*C P N = (0],)ERP*¢ 1P,

Conversely, given a forward representation with Af,C/, VI, M,N functions and x.y defined by
the above forward representation (3.2.1 & 3.2.2), then o is a Gaussian system.
b.  The given Gaussian system has also a backward representation given by

X = ANOx, + MV, xy, (3.2.3)
yeo1 = CPox, 4+ Nl (3.2.4)

where vP QX TR ' % is a Gaussian white noise process with intensity V. Giveno

AP = Elx, 1 x10(0) (3.2.5)
Chey = Ely, 1x]100) ', (3.2.6)
Qu—1  Elx, ;
bpy — - A%(r) ] beenT (b T .
VO = | pd 1) Bl Lidlew Huroy cren']. 6.27)
M = (1,0, N =(01,).

Conversely, given a backward representation with A bt vt M,N and x,y as defined by the
above backward representation, then o is a Gaussian system.
c.  Therelation between the forward and backward representation of a Gaussian system is given by

ATOO W) = Q@ + 1)@ +1)7, (3.2.8)
CtYQ ) = ¢St —~ 1O — )AL ¢ — 1) + NV - 1)M 7, (3.2.9)
Q@) = Che + DO + (A + 1) + NVi@ + )M T, (3.2.10)

d.  Assume that the given Gaussian system is stationary. Then A/l v/ A b .ot vh donot depend
explicitly on t €T and Q(1)=Q ER" ™", Q=0 T>0. The relation between the forward and
hackward representation is then given by

47 =Qu)'Q (3.2.11)
AP = uahTo 1, (3.2.12)
ch=cfoUNTQ '+ NVIMTQ Y = /Al + NVIMTQ Y, (3.2.13)
/= CPQUANTQ T+ NYPMTQ T =ctal - NVEMTQ (3.2.14)

In the following the superscripts fand / will be omitted when it is clear from the context which
represcntation is referred to.
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3.3. Stochastic obscrvability and stochastic reconstructibility

The theorem on the charactcrization of minimality of a stochastic rcalization makes use of the
concepts of stochastic obscrvability and stochastic reconstructibility. Below these concepts arc
introduced.

DEFINITION 3.3.1. Counsider a stochastic system
o= {QFPTR B R"B" yx}ESE.

a.  This system is called stochastically observable on theinterval {#,¢ +1,. .., 2 +1,} if the map
! ' o
x¢ e Elexpli S uly, o) | FY)
s—0

Sfrom x; to the conditional characteristic function of {y.,y 11, ...,y 1, } given x, is injective on
the support of x,.

b.  Assume that the system o is stationary. Then it is called stochastically obscrvable if there exists
a 1, 11€T,0<t1<oo, such that it is stochastically observable on the interval
{t,t +1,...,¢ +11) as defined above. By stationarity this then holds for all t €T.

The intcrpretation of a stochastically observable stochastic system is that if one knows the condi-
tional distribution of {3, 1. .., 1+, } given x,, then one can uniquely determine the value of
x;. Note that the conditional distribution of {y,, ...,y ,,} given x, can in principle be deter-
mined from mcasurcments.
ProrosiTION 3.3.2. Consider the Gaussian system

o= {QFP TR B'R"B" y,x}EGSE,
with forward representation

X1 = AQ@N, + My,

= C(t)x, + Ny,

withv, €G (0, V(1))
a. The system o is stochastically observable on {#,t +1,. ..t +1,} iff
C()

C@+DP@ + 1r)

rank =, (3.3.1)

C@t 4ty +11,0)
iff
n . .
rank(’S, C(t +8)0( +5,0)0(t +5,0"C(1 +5)7) = n.
s -0

b, Assume that the system is stationary with forward representation
X, 1 = Ax, - My,

o T Cxp + Ny,
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with v, €G (0, V). Then this system is stochastically observable iff

C

CA
rank | =n. (3.3.2)

can!

DEfrINITION 3.3.3. Consider the stochastic system
o= {QFPTR BR"B" yx}ESE
a.  This system is called stochastically rcconstructible on the interval {t —1,t —=2,...,t —t1} if
the map

r' -
xp > Elexp(i 3 uly, | F¥)
s—=1

is injective on the support of x,.

b.  Assume that the system is stationary. Then it is called stochastically reconstructible if there
exist t,t} €T, 0<ty<<oo, such that it it stochastically reconstructible on the interval
{t—1,...,t —ty}. Bystationarity this then holds for any t €T.

ProrosiTION 3.3.4. Consider the Gaussian system

o= {QFPT,R B R" B" yx}ECGSE
with backward representation

X, o] = AN, + My,

Vo1 =C)x, -+ Ny,

with v, €G (0, V (2)).
a.  Thesystem o is stochastically reconstructible on the interval {t —1,t —=2,...,t =1} iff

Ca@)

C =Pt —1,6)

rank =, (3.3.3)

C@—1)b(t —11,0)
i
’l ol o
rank (3 C(t = s)b(t —5,)0( —s5,0)' C (¢ —5)") = n.
s—1
b.  Assumne thut the system o is stationary with backwaird representation

Xy 1 — A.\’, + fﬂv,,

Ye 1 = Cx; -+ Ny,
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with v, €G(0,V). Then it is stochastically reconstructible iff

c

CA
rank | . =

CAn»l

(3.3.4)

Note that the condition (3.3.2) is expressed in terms of the matrices (A4,C) of the forward repre-
sentation of the Gaussian system and the condition (3.3.4) is cxpressed in terms of the matrices
(4, C) of the backward representation. Sce scction 3.2 for the way the matrices of the forward and

backward representation are related.

3.4. The weak Gaussian stochastic realization problem

Attention is again dirccted to the problem of modelling by a stochastic system. So, one is given a
measurc on the obscrved process that has been estimated from the data. Onc is asked to determine
a stochastic system in the modcl class such that the measure restricted to the obscrvation process

cquals the given measure.

ProBLEM 3.4.1. The weak Gaussian stochastic realization problem for a stationary Gaussian pro-
cess is, given a stationary Gaussian process on T =1 taking values in (R, BF) having mean value
function zero and covariance function W :T—RP P, to solve the following subproblems.

a.  Does there exist a stationary Gaussian system

o= {Q,FP,T,RF B’ R" B" y,x}EGSZ

such that the output process y of this system cquals the given process in distribution. This means
that these processes have the same fumily of finite dimensional distributions. Effectively this
means that the covariance function of the output process must be equal to the given covariance
Sunction W because both processes are Gaussian. If such a system exists, then one calls o a weak
Gaussian stochastic recalization of the given process, or, if the context is known, a stochastic
rcalization.

b.  Classify all minimal stochastic realizations of the given process. A weak Gaussian stochastic
realization is called minimal if the dimension of the state space is minimal. The following sub-
problems must be solved:

. characterize those stochastic realizations that are minimal;

2. obtain the classification as such;

3. indicate the relation between two minimal stochastic realizations;

4. produce an algorithm that constructs all minimal weak Gaussian stochastic realizations of
the given process.

In problem 3.4.1 one is given a stationary Gaussian process with zero mean value function. Such a
process is thus completely characterized by its covariance function. In part a. of this problem the
question is whether the given process can be the output of a stationary Gaussian system. Because
by dcfinition such a Gaussian system has a finite-dimensional state spacc, not all stationary Gaus-
sian processes can be the output process of a Gaussian system. The question should therefore be
interpreted as to determine a necessary and sufficient condition on the given process, or its
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covariancc function, such that it can be the output process of a Gaussian system.

In part b. of problem 3.4.1 a classification is asked for. This question arises becausc a sto-
chastic realization, if it exists, is in general nonunique. This will be indicated below. The dimen-
sions of the state space of two stochastic realizations may also be different in general. For system
theoretic reasons, such as identifiability, one should restrict attention to those stochastic realiza-
tions for which the dimension of the state space is minimal. Such a realization is called minimal. In
general minimal stochastic realizations arc also nonunique. A classification of all minimal stochas-
tic realizations is then uscful for the solution of the identifiability question. The above defined
problem is related to the problem of determining spectral factorizations of the spectral density of
the given process.

Bclow a notation is used for the paramcters of a time-invariant finitc-dimensional lincar sys-
tem of the form

x(+1)=Ax@) + Bu(r),
» (1) = Cx (1) + Du(),
with U=R™, X =R", Y =R’, u:T—U, x:T—X, y:T—Y. Thc notation is then
pls = {p,u,m,A,B,C,D}ELZP.

In the formulation of thcorem 3.4.2 usc is made of the set @,7;. The definition of this set is given
in subscction 3.5.

THEOREM 3.4.2. Consider the weak Gaussian stochustic realization problem for a stationary Gaussian
process as posed in 3.4.1. Assume that lim W (t)=0 and that W (0)>0.
r-—->o0c
a.  There exists a weak Gaussian stochastic realization of the given process
iff there exists upls = {p,n,p,F,G,H,J}ELEP withJ =J T such that

Hr ¢, if >0,
wiey —~ {2, ift=0, (3.4.1)
G'I'(l."l') t ]11 'l" {ft<0

(a function having the form (3.4.1) will be called a discrete-time Bohl function; the right hand
side of (3.4.1) will be called a covariance rcalization of the covariance function W.)
if
WA = 3 WA I (3.4.2)
=y 4
is a rational function. The dimension n in the covariance realization (3.4.1) is also called the
McMillan degree of the covariance function.
b. A weak Gaussiun stochastic realization is minimal iff it is stochastically observable and stochast-
ically reconstructible.
C. A minimal weak Gaussian stochastic realization is nonwtique in two ways.
L Mfpgs,= (p,om,A,C,M,N,VYEGSZP are the parameters of a forward representation of
a minimal  stochastic  realization, and if SER"™" is nonmsingular, then
pgs2= {ponm,SAS .S U SM,N, VYEGSZEP are also the parameters of a forward
representation of « minimal stochastic realization.
2. Fix the parameters of a minimal covariance realization as given in a. above,
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pls={p,np, FGH,JYELZP o,

Denote the parameters of a forward representation of a minimal Gaussian stochastic reali-
zation by {p,n,A,C,V} and the set of such parumeters by WGSRP nin. Define the
classification map

Cpls: QIE - WGS‘RPmin: C/)[J(Q) = {Pa”yAsC: V}, (343)
bpA=F C=H,
Q—-FQF" G —FQHT

V=V = 6T 1ioFT 2 — HOHT|'

Then, for fixed pls € LEP iy is ¢y a bijection. Thus all minimal weak Gaussian stochastic
realizations are classified by the elements of Q.
d.  The stochastic realization algorithm as defined in 3.4.3 below is well defined and constructs all
minimal weak Gaussian stochastic realizations.

ALGORITHM 3.4.3. The stochastic realization algorithm for weak Gaussian stochastic realizations of

stationary Gaussian processes.

Data: given a stationary Gaussian process with zero mean value function and covariance function

W:T—RP>P. Assume that the condition of 3.4.2.a. holds.

1. Determine a minimal covariance realization of W via a realization algorithm for time-invariant
Jinite-dimensional linear systems, or pls = {p,np,F,G,H,J } € LEP iy, such that

HF' G, if 1 >0,
Wit) = {2/, ift =0, (3.4.4)
07'(]:7') H 111 [,Ift<0

For algorithms for this step see books on linear systent theory.
2. Determinea Q EQI,”,;, ora Q ER" satisfying Q = Q =,
[Q —-FQFT  G-ron” J

G- 1QF" 2 -~ Hou'| = (3.4.5)

A=FC=H0M=10ER™'PD N =(01)eR*"'P,
Q-FQF" G -FQH"

e , . (4 p)X(n+p)
GT—11QFT 2 —Hou"| R ,

V=VQ) =

construct a probability space by
Q=R"'MF =11, Q80P v QX TSR P y(w,1) = w(t), P:F-|0,1]

a probability measure such that v is a Gaussian white noise process with intensity V,
QX TR y: QX T-RP defined by

Xy = Ax o My, xo =0, (3.4.6)
Yo = Cxp + Ny (3.4.7)
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Then

g = (ﬂstPaTs R'Dva’R",Bn’,V,x} €GSZ (3.4.8)

is a minimal weak Gaussian stochastic realization of the given process, meaning that the output
process y is a Gaussian process with covariance function equal to the given covariance function
w.

A mistake that is sometimes made is the following. Consider the following forward representation
of a Gaussian systcm
x4 = Ax, + My,
Y = Cx; + Ny,

with ,€G(0,V). A statement is that if the pair of matrices (A,MV”) is a reachable pair and if
(4,C) is an obscrvable pair, that then the stochastic realization described by the above system rep-
resentation is a minimal rcalization of the output process. This statement is falsc as the following
cxample shows.

ExampLe 3.4.4. Consider the Gaussian system
o= {QFPT R,BR,Byx}EGSE
with forward represcntation
Xp 1 = ax, o+ by,
Yo =X vy,

withy, €GO, 1), a €( -1, + 1), a0, b =(a®— 1)/ a.
a.  Then (a,b) is a rcachable pair and (g, 1) is an obscrvable pair.
b. The system ¢ is a nonminim»l realization of its output process.

Itis possible to intcrpret certain stochastic realizations as a Kalman filter but this will not be done
here. For a reference scc [24].

The implication of the weak Gaussian stochastic rcalization problem for the identifiability
question is illustrated by the following example.

ExamPLE 3.4.5. Consider the time-invariant Gaussian system
o= {QFPT,R,BR,Byx}ECGSE

with forward rcpresentation

ax, + (10)y, 34.9)

Xt

1!

ye = cexp + (0 Dy, (3.4.10)

Wilh V,EG(O, V)’
l‘ = v” 3411
0 : (‘ . )

V22
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Consider the asymptotic Kalman filter for the Gaussian system (3.4.9 & 3.4.10)
Xey = ak, A k(X)) (3.4.12)
Y=y Xy (3.4.13)

in which v:Q X T—R is a Gaussian whitc noisc process with v, €G(0,r). This asymptotic Kalman
filter may bc rewritten as

R = dk, + kv, = dk 4+ (10w (), (G4.19)
Y=k T = ek A (0 (), (34.15)

in which v, :2 X T—R? is a Gaussian white noisc process with v (1) EG (0, V),
k*r kr k
ool = h r(k 1). (3.4.16)

From these forward representations onc deduces that (3.4.9 & 3.4.10) and (3.4.14 & 3.4.15) arc
both weak Gaussian stochastic realizations of the output process y. This may be verified by com-
puting the covariance function of the output process. This cxample shows that onc may not be
ablc to uniqucly dctermine the parameters of the noisc process of a Gaussian system, here (3.4.11)
and (3.4.16), from the covariance function of the output process. FFor results on the parametriza-
tion of Gaussian systems sce [34].

Attention has also been devoted to the partial weak Gaussian stochastic realization problem
in which onc is not given a covariance function on all of T"=Z but only on a finitc time sct, say
T={—-t),—n+1,...,—1,0,1,...,2;}. The motivation for this problem is that in practicc one
can cstimate from a finite time serics only the covariance function on a finite time set.

3.5. The dissipation matrix inequality

In subscction 3.4 it has been stated that the minimal weak Gaussian stochastic rcalizations are
classificd by the sct Q. In this scction the set Qg and its dual @, will be considered.
Throughout this scction/ =J 7. The results of this subsection may be found in [23, 24].

DEFINITION 3.5.1. Letpls = {p,n,p, F,G,11,J} € LEP withJ =0 and

Q-FIQF HT—F"QG

Q= (QER™"|Q=0"20,V(Q) = [11—0"'QF 2-G'g |70 B3

and for pls = {p.np, FT\H',G" . J}€LZP

e Q-FQF" G-FQH"
Q= (QERT|Q=0"=0. V(Q) = [GT—HQFT ZI—HQH"] =0} B32)

ProBLEM 3.5.2. GIVEN pls €ELZP AND O,,b.
a.  Classify all clements of Q.
b.  Dectermine an algorithm that constructs all clements of Q.

ProrositioN 3.5.3. Consider pls = {p,n,p, F,G,11,JYELZP 1\, and Q5. Assuwme that Qi+ 2,
and that J>0. Then Q; is a convex, closed and bounded set, and there exists a Q , Q * €Q,
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such that for any Q €Qpp, Q-<Q<Q".

DEFINITION 3.5.4.
The regular part of Qs is defined as

Qpls.r = {QEQpIsI ZI—GTQG>O}-

a.

The set Qs will be called rggular if Qs = Qpps,
b, For QER"™ " with Q =Q "and2J -G TG >0 define

D(Q)=Q —F'QF = [H"=FTQG|[2/ -G QG| '|1i" - FTQG)". (3.5.3)
¢. Correspondingly define
Q5. = (QEQ; |2 ~HQHT>0),
D(Q) = Q —FQF" = [G=FQH "2/ ~HQI") (G- FQIT), (3.5.4)
and Qp is regular if @ o = QI)‘,;‘ -

PROPOSITION 3.5.5. Let pls = {p,n.p,F,G,H JYELEP. Let Q €R"*" o=0".
a  Assume that 2J — GTQG >0, and let

r= [l—ly—crgcl‘x[u—c"'Qﬂ | e e, 727
Then

@0 roa] = T'VeOT, (350)
and

D(@) 0

where V(Q) is as defined in 3.5.1.
b.  Assume that 27 =G QG>0. Then V(Q)=0 iff D(Q)=0. Also V(Q)=>0 iff D(Q)>0. In
Jact, rank (V(Q)) = rank (D(Q)) + p.

Quer = {QER"[Q =0720, 2 -G'0G>0, D(0)=0).

Notation for the boundary of Qs will be needed. The following notation will be used in the
sequel,

rAT %

”Q”2 = Su[)_‘ E:R".,\‘#—‘U—X—QT& N (3.53)
XX

B(Q,0) = (SER"*"| |IS—Qll;<¢). (3.5.9)

DEFINITION 3.5.6. Lct pls € LEP and consider Q. Define the boundury of @, as the sct

pls-
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3Q,, = (QE€Q, |V ¢ER, >0, IS €B(Q, ) such that =87, 5#£0, S EQu),
and the interior of Q, as the set

int (Qp) = Quus N (9Q)"

PropPosITION 3.5.7. Let pls ={p,n,p,F,G,H,J } eLZP.

a.  QEQ iff V(Q) is singular. Q Eint Qi) iff V(2)>0.

b.  Assume that Qg is regular. Then Q €0Qy if D(Q) is singular; and Q €int (Qpy) iff
DQ)>0.

DEFINITION 3.5.8. Let pls ={p.n,p,F,G,H,J } ELZP and consider Q pis-
a.  The set of singular boundary points of Q, is defined as
0Q,, = (Q €3Qy |rank (V(Q)) = rank (2J —GTQG)).
b.  The set of singular boundary points of the regular part of Q@ is defined as

Qs = (0 EQps,NAQ | rank(V (Q)) =p).

THEOREM 3.59. Let pls= {p,np,F,G,H,J} ELZP 1. Assume that thﬁé @ and that it is regular.
Let

F =F—-G2W-G"Q G] "\H"-FQ G).

Then Q™ +A8Q €Q,y and AQ >0 iff
1. AQER"*" AQ>0;
2.

(BQ) '~ F (AQ) 'F ) - G —-GTo 6] 6T -5 =0, (3.5.10)

forsome S ER"™" § =51 =(;
3. sp(F )ccC

3.6. The strong Gaussian stochastic realization problem

ProBLEM 3.6.1. The strong Gaussian stochastic realization problem for a stationary Gaussian pro-
cess is, given a probability space (U, F,P), a time index set T=Z and a stationary Geussian process
2:QXT—RF having zero mean value function and covariance function W:T—RP*P, to solve the fol-
lowing subproblems.

a.  Does there exist a stationary Gaussian system

o= {QFL,T.R,B'R"B" y,x} EGSZ
with forward representation
X1 = Axg + My, xy,
)= Cx, + Ny,

such that
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. y=zas forallteT;
2. FY“CF foralltET.
If such a system exists then one calls o a strong Gaussian stochastic realization of the given
process, or, if the context is known, a stochastic rcalization.

b.  Classify all minimal stochastic realizations of the given process. A strong Gaussian stochastic
realization is called minimal if the dimension of the state space is minimal.

The differcnce between the weak and the strong Gaussian stochastic realization problems is that
the given process and the output process of the Gaussian stochastic system are cqual in the sense
of the family of finite-dimensional distributions respectively equal in the sense of almost surely.
For the strong Gaussian stochastic rcalization problem this requires that the stochastic system is
constructed on the same probability space as the given process. Therefore the state process has to
be constructed from the given process, and this explains condition 2 of problem 3.6.1.a.

IFor a survey of the strong Gaussian stochastic realization problem the reader is referred to
the paper [47].

3.7. Pseudo-distances on the set of probability measures
The purposc of this subsection is dcfine distances on the set of probability measures as a prepara-
tion for the approximate stochastic realization problem to be discussed in the next subsection.

DEFINITION 3.7.1. Let X be a set. A pscudo-distance is a function d : X X X—R such that
1. dx))=0forall x,y €X;
2. dp)=0iff x =y

If a pscudo-distance is not symmetric then one may construct its symmetrized version. A pscudo-
distancc nced not satisfy the triangle incquality.
DEFINITION 3.7.2. Let

Fy = (iR, »R|fEC2 f(1)=0, Vx €(0,0), ["(x)>0).

DEFINITION 3.7.3. Given a measurable space (8, F), let
P = {P:F-R | Pisaprobability measure }.

For f€Fy define the pscudo-distance dy: PXP—R on the set of probability measures _I: on (2, F) by
. 2 "
d(Py,Py) = L’Q[f(rz‘)l‘zl = Epzlf(‘l;“)l

where Q is a o-finite measure on (R, F) such that

. aP,
=ry, Py<Q with =ro.

aQ

The pseudo-distance dy is also called the f-information measure, the f-entropy or the f-divergence.

Py

d
P, <Q with

A o-finitc measurc Q as mentioned above always exists, for cxample Q =P+, will do. In case
(€, F)=(R,B) onc may somctimes takc Q to bc Lebesguc mcasurc. Because >0 a.s. P, the
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above expression is well defined. The above definition has been given in [1].

ProposITION 3.74. [1].
a.  The function d; defined in 3.7.3. is a pseudo-distance.
b.  The pseudo-distance dy does not depend on the choice of the o-finite measure Q.

DEFINITION 3.7.5. The Kullback-Leibler pseudo-distance is defined as dp:PX PR with

x In(x), x>0,

1R =R, fix) = 0, x=0,
- " . 1 r
dp (P, Py) = bPz[fl(Tz’)] = EQ]fl(Fz‘)"z] = EQ[")'"(",—Z‘)I(r,>0)]~

DEFINITION 3.7.6. The Hecllinger pseudo-distance is defined as dy,: P X P—R with
2R SR, fo(x) = (Vx = 1),
d,(P1,Py) = Ep[(\Vr1/ry —=1)’] = Egl(Vry — Vi)

The Hellinger pscudo-distance is symmetric.

Consider the st of functions on 7 =Z with valucs in R¥. Let P be the sct of Gaussian meas-
ures on this space that makc the underlying process a stationary Gaussian process with zcro mean
valuc function. An cxpression for the Kullback-Leibler pscudo-distance on this set was derived in

[43].

PROPOSITION 3.7.7. Let P, P; be two probability measures on the set of functions defined on T=12Z
with values in R¥. Assume that these measures are such that the underlying process is Gaussian, sta-
tionary, has zero mean value function, and covariance fwzctiom Wi, W,y respectivel_y. Moreover,
assume that these covariance functions admit spectral densities Pi/], Wz respectively and that they
satisfy condition C of [43]. Then the Kullback-Leibler pseudo-distance is given by the expression

dxeP1P2) = 5o [ e 0= 10D = In (¥, QW20

3.8. The approximate weak Gaussian stochastic realization problem

How to fit to data a model in the form of a Gaussian system? In cnginccring, in biology and in
cconomiics there are many modelling problems for which an answer to this question is uscful. As
indicatcd in scction 2, from data onc may estimate a mcasurc on the sct of obscrvation trajec-
torics. In casc that one modcls the observations as a sample function of a Gaussian process, onc
may cstimate its covariance function. Suppose further that one wants to model the obscrvations as
the output process of a stationary Gaussian systen. Such a system has a finite-dimensional state
spacc. In thcorem 3.4.2 it has been shown that a covariance function has a stochastic realization as
a Gaussian system only if it has a covariance realization as indicated or if it is rational. Now an
arbitrary covariance function obtained from data may not correspond to such a covariance func-
tion. Thercfore onc has to resort to approximation.
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The approximate stochastic realization problem is then to determi
specified class such that the measure on the output process of this system approximates the meas-
urc on the same space determined from the data. Attention below will be restricted to the class of
stationary Gaussian systems with dimension of the state spacclessorequal ton €7 . Asa n;cas-
ure of fit the Kullback-Leibler pseudo-distance will be taken as mentioned in subscction 3.7. A
measure of complexity will not be considered here: it may ity
indicated in scction 2.

ne a stochastic system in a

be based on stochastic complexity as

ProsLEM 3.8.1. Approximate weak Gaussian stochastic realization problem. Let Y7 denote the set
of time series defined on T =1 with values in RP, and let P(

o oI . : Y") denote the set of probability meas-
ures on Y. Given is a Gaussian measure Py € P(Y") such that the underlying process corresponds to

a stationary Gaussian process with zero mean function. Given is also an integer n€Z, and let
GSZ(n) be the set of Gaussian systems with state space dimension <n. Solve the optimization prob-
lem

infoe sy dxL(Py, P(0))

where di is the Kullback-Leibler pseudo-distance on the set of probability measures on P(Y"), and
P(o)EP(YT)is the probability measure on Y associated with the Gaussian system o € GS Z(n).

As indicated in 3.7.7, if the pscudo-distance on the sct of Gaussian measures is the Kullback-
Leibler measure then the pscudo-distance may be expressed as a pscudo-distance on the sct of
covariance functions

dg(Po, P(0) = d\(Wy, W (o))

where Wy is the covariance function associated with the Gaussian measure Py and W(o) the
covariance function associated with the Gaussian measure P(a). Note that the covariance func-
tion W (o) is a rational function with McMillan degree less or cqual to n becausc it corresponds to
a Gaussian system of statc spacc dimension less or equal than s, The approximate weak Gaussian
stochastic rcalization problem may thercfore be considered as an approximation problem for a
covariancc function. In this problem the approximant W(o) has to bc a rational function of
McMillan degree at most n while the given covariance function W may ncither be rational nor of
finite McMillan dcgree.

The approximate stochastic realization problem 3.8.1 is unsolved. Approaches along threc
different lines have been investigated.

Approach 1. Given any pscudo-distance d4, problem 3.8.1 can be reformulated as an approxima-
tion problem for covariance functions with the criterion

d(Wy, W(0))
where W is the covariance function associated with the Gaussian measure Py and W(o) the
covariance function associated with the Gaussian measurc P(0) related to 6 EGS E.
PROBLEM 3.8.2. Given a covariance function W y:T—R? %P solve

infye:gss, di(Wo, W(0)).
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The pscudo-distance o) on the sct of covariance functions may be taken to be the Hankel norm or
the H-infinity norm. Possibly the L;-norm is suitable.

The above problem may be rephrased as, given a not necessarily rational covariance func-
tion, to determine a rational covariance function that approximates the given covariance with
respect to an approximation critcrion. Note that a function is a covariance function iff it is anti-
symmetric and a positive definite function.

It scems that a Hankel norm approximation of a covariance function is not itsclf a covari-
ance function. The positive definiteness of a covariance function is therefore an cssential con-
straint. References on this approach are [28,29, 31, 38,51, 65].

There is a rclated approach in which onc first determines a spectral factor of the given
covariancc function and then a rational approximation of the spectral factor. This approach seems
100 restrictive to start with, although it may be the solution to some approximation criterion.

Of course, given any rational approximation of the covariance function onc will still have to
determine a state spacc realization for it.

Approach 2. By analogy with the approximate prediction problem for finite-dimensional Gaussian
random variables, algorithms have been proposed for the approximate weak Gaussian stochastic
realization problem.

ALGORIIHM 3.8.3. LET BE GIVEN A COVARIANCE FUNCTION W,
1. Solve an approximate prediction problem. Fix r €T. Let

¥ _Vl 1

. Yo Ve -2
yo=|1... Ly @0=

Ve Vi s

The variance of the pair (y ' (r),y (1)) may be computed from the covariance function W.
Letn €Z ;. Determinc a matrix S €R" S such that with x (£)=Sy ~(¢) the following pred-
iction critcrion is minimized
infsres r(ELG O E @PFODG =B @ [FO)T).
2. Determine a Gaussian system via regression by proceeding as follows,

gty

il

[”C‘J x() + v (@), v()EGO, V),

where

it

4

v (1)

N O NN G

(V'] - [

Finally, replace the Gaussian process v with a Gaussian white noise process w with variance
v.

I

The above algorithm in a somewhat different form appeared first in a paper of H. Akaike [3].
Other references arc |11, 12, 44-46, 75, 76]. Thesc papers differ mainly in the way they perform step
I of the above algorithm. For canonical corrclation analysis and the prediction problem sce
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[27,57).
It is not clear in what sense the Gaussian system determined in step 2 of the above algorithm
is a good approximation to the given Gaussian process. In other words, the approximation cri-

terion, although inspired by the static approximate prediction problem, is never mentioned. The
replacement of the process v by a Gaussian white noisc process is also unmotivated.

Approach 3. Canonical correlation analysis for finite-dimensional Gaussian random variables has
been generalized to infinite-dimensional Hilbert spaces in [36,37,49]. Onc has investigated
approximate prediction problems for time serics by canonical corrclation analysis techniques.

Approximation bounds have been derived [30]. It remains to be scen whether this approach is usc-
ful in practice.

Approach 4. Inspircd by the above mentioned sccond approach to the approximate weak Gaus-
sian stochastic realization problem yet another approach has been formulated. This approach has
bcen worked out by M. Stohr at the Centre for Mathematics and Computer Science. The following
results up to the end of scction 3 are duc to M. Stohr and are as of yct unpublished.

NOTATION 3.8.4. Let ky,ky,n €Z ,, k=k+k,. Recall that G(0,Q) denotes a Gaussian measure,
say on RX, with zero mean and variance Q. For Q €R¥>¥ the decomposition

0 On @n
ok 9
will be used in which Q 1, ERV41 045, €R¥™ % and @ 1, eR* X, Ler

Q) = (QERFXK Q0 =0T=0, rank(Q )<n}.

ProBLEM 3.8.5. The static approximate weak Gaussian stochastic realization problem. Given are
kykoyn€Z ., k=ky+ky and a Gaussian measure G(0,Q) with Qo=07>0. Let dy, be the
Kullback-Leibler pseudo-distance on the set of Gaussian measures on RX. Solve

inf .00, 0, cam 4k(G(0,00),G0,21))

Onc may interpret the above problem in the light of approach 2 indicated above. Associate the
spacc R with the past of the obscrvations, and the space R** with the future of the observations.
The Gaussian measure G (0, Q) may then be associated with that derived from the data. In prob-
lecm 3.8.5 onc is asked to determine the measure G (0, Q) with @ €Q(n). The latter condition
implics that the dimension of the state space associated with G (0,0 ) is less or equal to . There-
fore the essential constraint on the dimension of the state space is taken care of.

PROPOSITION 3.8.6. Counsider problem 3.8.5. The Kullback-Leibler measure of two Gaussian meas-
ures G(0,Q¢) and G (0,0 ) on R¥ is given by the expression

dx1(G(0.00,G(0.01) = Y r(Q1 ' Qo) — In(det (@' Qo) — K]
k
= U 3 MMQu 01 ~ InA(Qu. Q1)) — k],
i1
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where {N(Qy,Q1).i €L} are the generalized eigenvalues of Q with respect to Q, here defincd as
the zeroes of det (Q1A— Q) =0.

It can be shown that the gencralized cigenvaluces arc real and satisfy A,(Q, Q1) =0, fori €2,

NOTATION 3.8.7. For Qy ER* XK, 00=08>0,n€Z , let

A A ER% |3 Q €Q(n) such that generalized eigenvalues
Qo) = of Qo with respectto Q are (A, ..., A} :

and for N € RX et

_ Q €Q(n)| generalized eigenvalues
Qu(Qo.nN) = {‘7fQ0 with respect to Q are (A, ..., A}

FRE SR, ) = ‘/z[é()\,-—ln()\,»))—k].
i1

It may be shown that the function fis convex. There arc results on the structurc of the matrices in
the sct Q,(Qg,n,A).

ProBLeM 3.8.8. Consider problem 3.8.5 and the notation 3.8.7. Solve

inf xea@ony f A

Supposc that there exists a A* € A(Qy,n) such that
f(A*) = i’!/‘r\(—ZA(Q.,.n) f(}\)

The solution sct of problem 3.8.5 is then given by Q(Qg,n,A*). Notc that problem 3.8.8 is the
infimization of a convex function over the sct A(Qy,n). The latter sct is a conc. It is conjectured
that it is a polyhedral cone. It may be shown that the optimal solution of problem 3.8.8 is such
k
that > A;=k. This property simplifics the function f. If this constraint is taken into account then
i~1
the set A(Qy,n) is reduced to a shifted simplex. It is not yct known whether problem 3.8.8 admits
an explicit expression as solution or whether one has to resort to numerical minimization.
The hope is that the solution of problem 3.8.5 provides information on the solution of the
approximatc weak Gaussian stochastic realization problem 3.8.1.

4. SPECIFIC OPEN STOCHASTIC REALIZATION PROBLEMS

The purpose of this scction is to present scveral stochastic systems and processes for which the
solution to the stochastic realization problem may be uscful for engincering, cconomics ctc. The
presentation of these models is brief. The tutorial and survey-like character of this paper may
make it uscful to mention these models.
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Gaussian systems
The approximate weak Gaussian stochastic realization problem, as described in subsection 3.8, is
unsolved. For Gaussian systems there are unsolved problems for specific subclasses of systems
that may be of interest to specific application areas. Somc of these problems and models are
described below.

The co-integration and the ervor correction model. As a model for cconomic processes that move
about an cquilibrium, C.W.J. Granger [32] has proposcd a model that is known as the co-
integration model.
The components of a vector valued process y:Q2 X Z—R¥ are said to be co-integrated of order
L1if
1. after differencing once (Vy(¢t)=y (t) —y (¢t — 1)) the resulting process has a stationary inverti-
ble AutoRegressive-Moving-Average (ARMA) representation without deterministic com-
poncent; :
2. there cxists a vector « €R*, a5£0, such that z (f)=a’y(¢) has again a stationary invertible
ARMA representation without deterministic component.
The interpretation of this model is that the economic process that is modclled consists of a trend
and stationary fluctations, but is such that a lincar combination of the process is stationary. The
lincar combination should be associated with some difference of cconomic processcs, say income
minus consumption. According to the model this difference fluctuates around some cquilibrium
valuc and it may be considered as forced towards this equilibrium by economic forces. A generali-
zation of this model has been proposed, sce [22]. That paper also reports on the suitability of the
co-integration modcl for cconomic processes.
A vector valued proces y:Q2XT—R¥ is said to have an error correction representation, scc
[22], if it can be expressed as:

ABY1=By (1) = —yz (¢ —1) + u()

in which u is a stationary process representing a disturbance, 4 (.} is a matrix polynomial with
A(0)=1, B is the dclay opcrator dcfined by By (t)=y (t —1), there cxists a a €R* such that
z(n)= a’iy (1) and y ER*, y=£0.

The interpretation of an crror correction model is that the disequilibrium of one period,
z(¢£ — 1), is uscd to detecrmine the cconomic process in the next period.

For recent work on the co-integration and crror correction model sce a special issuc of Jour-
nal of Economic Dynamics and Control that is opencd by the spccial editor M. Aoki with the paper
[8]. In that issue there is another paper by M. Aoki [9] in which he shows that the co-intcgration
model may be obtaincd from a Gaussian system representation under a condition on the poles of
the system. In that approach a co-intcgration vector is not assumed, nor are assumptions nceded
on trends or periods.

An approach to the stochastic realization problem for the co-integration model and the crror
correction model may be based on stochastic rcalization theory for a particular class of Gaussian
systems.

Gaussian systems with inputs. A time-invariant Gaussian system with inputs has a forward repre-
scntation of the form

x(t+1) = Ax (@) + Bu(t) + My (),
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y(r) = Cx (@) + Du(t) + Nv(@),

where u:Q2X T—R™ is an input process, and v :2X T—R* is a Gaussian whitc noisc process. Such
systems arc used in stochastic control. The stochastic realization problem for this class of systems
has not yct been treated. It is motivated by stochastic control theory. An unsolved question is
whether such a stochastic system is a minimal realization of the mcasurc on the obscrvation
processcs of output y and input u. The conditions for minimality should be related to the solvabil-
ity conditions of the lincar-quadratic-Gaussian stochastic control problem.

For this class of systems onc has also to investigate the stochastic realization problem associ-
ated with the solution to the linear-exponential-quadratic-Gaussian stochastic control problem
[14,77]. This solution is related to recent results in H-infinity theory.

The Gaussian factor model
This model and the associated stochastic realization problem arc discussed in scction 5 of this

paper.

Factor systems
Thesc systems and the associated stochastic rcalization problem are discussed in section 6.

Positive stochastic linear systems

A stochastic system in which the state and obscrvations process take valuces in the vector space
R, will be called a positive stochastic system. The gamma distribution is an cxample of a probabil-
ity distribution on R , . Such systems may bc appropriatc stochastic models in economics, biol-
ogy, and communication systems where the state variables arc cconomic quantitics, concentra-
tions ctc. Examples from biology may be found in [56]. Several examples of such systerms follow.

Portfolio models. A portfolio model is a dynamic model for the growth of asscts such as sharcs,
bonds and money in savings accounts. After the fall of share prices in October 1987 therc is a
rencwed interest in portfolio modcls.

A stochastic portfolio model may be spccified by

dp (1) = ap (t)dt + p(t)dv(z), p(0),

where p:2XT—R represents the price of the assct, a €R represents a growth trend and
v:2XT—R represents random fluctuations. More refined models can be defined to account for
control of buying and sclling, and for switch-over costs. A realistic portfolio model would require
a realistic macro cconomic model for short-tcrm and long-term cconomic growth, preferably on
an international scale.

The portfolio modcl should be scen as a special case of a growth model. In addition, growth
models that exhibit saturation should be investigated in connection with market saturation cffects.

The realization problem for the stochastic portfolio model would have to deal with questions
as whether the trends and variances of these models can be determined from observed prices. This
problem becomes more interesting if, for example, the price of a share is related to development of
the markets in which the company is active, to its management structure, and to long-term growth
of the cconomy.
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The Gale model and a Leontieff system. Tor production planning of firms a model proposcd by
D.Gale is uscd. For references on this model sec the book by V. I. Arkin and 1. V. Evstigncev [10].
The classical Leonticfl model is a matrix relation between inputs and outputs of an cconomic unit.
A dynamic version of this model has been proposed, it will be called a Leontieff system.

The Gale model is specified by

2(0) = [x 5{ (7)1)], x,y:T—R" @1
satisfying

(NEQ), @2)

y@) = x(@), 4.3)

where Q(1)ER?" is a convex set. Here x(¢£—1) is called the inpwt, and y (t) the outpur in period
(t — 1,1}, and z(1) the technological process at time t €T. Condition (4.2) is a technological feasi-
bility condition; condition (4.3) implics that the input at any time step cannot cxceed the output
of the previous step. A parametric form of this model is given in subscction 1.1.8 of [10].

There is also a stochastic version of the Gale modecl, sce the subsections 2.4.1 and 2.4.7 of
[10).

Optimal control probicms for the Gale modcl are trcated in [10]. The results are maximum
principles and turnpike theorems.

Finite stochastic systems

In section 3 a finite stochastic system has becn dcfined. It consists of an output process taking
values in a finite sct and a finite-state Markov process. The stochastic realization problem for this
class of systcms is then to classify all minimal stochastic systems such that the output process of
such a system cquals a given process cither in distribution or almost surcly. The motivation of this
problecm comes from the usc of finitc stochastic systems as models for communication or comput-
ers systems. For such technical problems, stochastic models with discrete variables arisc naturally
or arc uscful approximatc modcls. The stochastic realization problem was formulated in 1957 ina
paper by Blackwell and Koopmans [15]. During the 1960’s several publications appcared that pro-
vide a nccessary and sufficient condition for the cxistence of a finite stochastic realization. For
references sce {52). Unsolved questions arc the characterization of minimality of the statc space
and the classification of all minimal stochastic rcalizations. The main bottlencck is currently the
charactcrization of the minimality of thc state spacc. This question leads to a basic problem for
positive lincar algebra, that is, lincar algebra over R ...

Counting process systems

An cxample of a counting proccss system is a continuous-time stochastic system of which the out-
put process is a counting process with stationary increments and in which the intensity process of
the counting process is a finite-statc Markov process. The stochastic realization problem for this
class of systems is unsolved.

The motivation for this stochastic rcalization problem comes from the use of counting pro-
cess models in communication, qucucing theory, computer scicnce, and biology. The obscrvation
proccss may often be taken as a counting process with stationary increments.

The above mentioned class of stochastic systems has been investigated in [68, 69). The qucs-
tion of characterizing the minimal sizc of thc state space is closcly rclated to the same qucstion for
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the finitc stochastic rcalization problen.

Gaussian random fields
For this class of stochastic objccts new mathematical models are nceded.

5. FACTOR ANALYSIS
In this scction the stochastic realization problem for the Gaussian factor analysis model will be
formulated and analyzed.

The factor analysis model was proposed carly this century. FFor references on the factor
analysis model sce [7,74]. Factor analysis is usecd as a quantitative model in sociology and
psychology. R. Frisch has suggested the factor analysis modcl as a way to dctcrmine relations
among random variables [25]. R. E. Kalman has emphasized this modcl and formulated the associ-
ated stochastic recalization problem [39-41]. Since then several rescarchers have considered the sto-
chastic rcalization problem for this modcl class. This problem is still unsolved. Below onc finds a
problem formulation, questions, partial rcsults and conjectures for this stochastic realization
problem. FFor recent publications on this problem scc the special issuc of J. of Econometrics that is
opcened by the paper (2.

Problem formulation

From cconomic data that exhibit variabilit: one may estimate a covariance. Supposc that this
data vector may be modelled by a Gaussian random variable. Effectively onc is thus given a Gaus-
sian mcasurc, say on R*. The initial problem may then be stated as: how to represent this meas-
urc such that the dependencics between the components of the vector arc exhibited? The factor
analysis modcl will be uscd to describe these dependencics.

DEFINITION 5.1. A Gaussian factor analysis model or ¢ Gaussian factor modcl is defined by the
specification

y=Hx +ow, (5.1)
or

vi = 1ix 4+ owy i=1,000,k, (5.2)

where x:Q—-R", x €G(0,0,) is called the factor, w:Q—R*, wEG(0,0,) is called the noisc,
»:Q-RY, y €G(0,Q,) is called the observation vector, H €R**" is called the matrix of factor
loadings, Q.. is a diagonal matrix, and (x,w) are independent random variables.

The interpretation of the Gaussian factor analysis modecl (5.2) is that cach component of the
obscrvation vector consists of a systematic part /{/,x and a noisc part w;. Obscrve that the condi-
tion that Q.. is diagonal is cquivalent to the condition that (s, ..., wy) arc independent random
variables. A gencralization of the above definition may be given to the casc in which Q,, is block
diagonal. The Gaussian factor model in rudimentary form gocs back to [67]. The Gaussian factor
analysis modcl is cquivalent to the confluence analysis model introduced by R. Frisch [25]. In this
modcl the representation of the observation vector is specificd by

y=utw Au =0,

in which A €R%  "M*k 1y 4y arc independent random variables, and Q,, is a diagonal matrix. For
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other references on this approach sce the publications of O. Reiersal [58, 59].

The Gaussian factor analysis modecl, or, cquivalently, the confluence analysis model, has
been suggested as an alternative to regression analysis. Strong pleas for this approach are the
introduction of the book by R.Frisch [25], and the papers of R.E.Kalman [39-41]. Within
cconomic and statistical litcrature the questions regarding regression and factor models have been
recognized, sce for example [7, 66,70, 80].

PROBLEM 5.2. The wcak stochastic rcalization problem for a Gaussian factor model is given a
Gaussiun measure G(0,Q) on R* 10 solve the following subproblems.
a.  Determine a Gaussian factor inodel, say

o= Hx + w,
such that the measure of y equals the given measure or
FEGU.0) = GO.Q).

If such a Gaussiun fuctor model exists then it is called a weak stochastic realization of the given
measure.

b.  Determine the minimal dimension n*(Q) of the factor x in a weak stochustic realization of the
given measure G(0,0). Call a weak stochastic realization minimal if the dimension of the fac-
tor systems equuls 1*(Q).

c.  Classify all minimal weak stochastic realizations of the given measure.

Part a. of problem 5.2 is cquivalent to: determine (1, Q,, @y, 1) ENXR"*" X R* X4 X R* X" such
that

Q=HQH" + Q,.

where @, =Q1'=0, 0, =QL=0, and Q, is diagonal. Part a of the above problem is trivial, the
hard parts of the problem are b and c.

Corresponding to problem 5.2 therc is a strong stochastic relization problem for a Gaussian
factor model. In this problem onc is given a probability space (&, F, P) and a Gaussian distributed
random variable - € (0,Q). The problem is then to construct a Gaussian factor model

»r= Hx +w

on the given probability spacc such that

and to classify all minimal modecls of this type. This problem has been defined in |54], where a
gencralization of the Gaussian factor model for Llilbert spaces is introduced. The strong stochas-
tic realization problem will not be discussed in detail here.

What is the main characteristic of the Gaussian factor model? To answer this question onc
has to introduce the following concept.

DEFINITION 5.3. The a-algebra’s I\, F, ..., F,, are called conditionally indcpendent given the o-
algebra G if

Elzy- 2 |Gl = El21 |G- Elzy | G
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Jorallz; €L " (F)). The notation
(F1.Fy. Fy | GYEC]

will be used 1o denote that Fy, . .., F,, are conditionally independent given G and CI will be called the
multivariate conditional independence relation.

The following clementary result then cstablishes the relation between the Gaussian factor model
and the conditional indcpendence relation.

PROPOSITION 5.4. Let y,;:Q—R, i =1,2,..,k, x:Q—R". The following statements are equivalent:
a.  The randoni variables (y 1. ..,yx,X) are jointly Gaussian with zero mean and satisfy

(L P FYHECH

b.  The random variables y,x satisfy the conditions of the Gaussian factor analysis model of 5.1 with
the representation

yo=Hx +ow

The conditional independence property of a Gaussian factor model is now scen to be its main
characteristic. [t will be called the factor property of a Gaussian factor modcl. It allows cxtensions
to non-Gaussian random variables. Such cxtensions have been considered in the literature, sce for
references [74). The factor property is a genceralization of the concept of state for a stochastic sys-
tem. In such a system the future of the state and output process on onc hand, and the past of the
statc and output process on the other hand are conditionally indcpendent given the present state.
The analogy is such that the statc corresponds to the factor and the output process to the obscrva-
tion vector of the factor modcl. The factor property or the conditional independence property
occurs in many mathematical models in widcly different application arcas.

Below the stochastic realization problem 5.2 will be discussed, first in terms of the external
description and then in terms of the internal description.

The stochustic redlization problem in termns of the external description.
In this subscction onc is assumcd to be given a Gaussian measure G (0,Q,). The weak stochastic
realization problem for a Gaussian factor model specializes in this casc to the following question.

QUESTION 5.5. Given a Gaussian measure G (0,Q,.).

a.  What is the minimal dimension n* ((ehYY4 the Sfactor in a stochastic realization of G (0,Q)?

b, What is the clussification of all minimal stochastic realizations of G(0,Q), or all decompositions
of the form

Q; =0 t Qw
inwhich Q0= Q{ 20, 0,,=QI'=0 is diagonal and rank (Q )= n*(Q,).
NOTATION 5.6.
a.  IfQERY™* then
D(Q)eRr 4
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is a diagonal matrix with on the diagonal the elements of the diagonal of the matrix Q.
b. IfQe R*** then the matrix OD (Q)ERY ™K called the off-diagonal part of Q, is defined by

0D (Q)i =0, OD(Q); ;= Q. ), for all i,j €Ly, i)

Q0. ko) = |@LOIERVEXREA] 0, =01 20, rank(Q1)=n,
e Qu':Q;{:>O’ Qu' diflgOila/» Q_y = Ql + Qw

n*(Q,) = min{n EN|3 (21.2.)€Q(Q,,k,n)}

It turns out to be uscful 10 work with a standard form for the variance matrix, a canonical form.

DEFINITION 5.7. Oune says that the matrices Q1,02 ERN*X, that are assumed to be strictly positive
definite, are cquivalent if there exists a diagonal matrix D €(0, 00)K %K such that

Q1= DQ,D.

A canonical form with respect to this equivalence relation is then such that D(Q) = /. An inves-
tigation should be made of another cquivalence relation defined as in 5.7 in which ncgative cle-
ments arc also admitted on the diagonal.

Qucstion 5.5.a is still unsolved. Characterizations of n*(Q,) arc known in the two cxtreme
cascs of n*(Q,)=1 and n*(Q,)=4k — 1. These results arc stated below. The characterization for
n*(Q.)=1 mziy go back to C.Spcarman and co-workers. The formulation given here is from [13].

THEOREM 5.8. [13]. Given Q, ERF XK, Q.= Q‘;’.'>O. Assume that k=4, Q, €(0,00)**, and that o
is irreducible. Then n*(Ql.): iff

Gudjm — Qim G = 0, qudji — Giqjt <0,
Vi l,m €Ly, Istm, j5L jm, i =] iz=m.

THEOREM 5.9.[13,39,58]. Given Q, €R**¥, 0, =Q['>0. Then n*(Q,)=k —1iff Q! has strictly
positive clements, possibly after sign chunges of rows and corresponding columns.

What are the generic values of #*(Q,)? Bcelow are stated the miain results from a study by
J. P. Dufour [20] on this question.

DErINITION 5.10. Let

Sy = {(QER|0=0T).

Note that the condition of positive definiteness is not imposed in the definition of the set S . In
the following the Cuclidean topology is used on the vector space R”.
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THEOREM 5.11.[20).

a.  There exists an open and dense subset S CS ' such that for all 0, €S
n*(Q,) = %2k +1- V1+8k).
This inequality is known as the Ledermann bound.
b, Let QE€S. Forevery Qy inasufficiently smull neighberhood of Q in' S the relation
Q) = n*(Qy)
holds.
C. For any integer p such that
Bk +1-VIiBh)<p <<k ~1

there exists a Q €S such that n*(Q)=p.

By way of illustration there follow characterizations on the value of #*((.) for variancc matriccs
0, ER* K with several low values of k.

PROPOSITION 5.12. Let 0, ERY, 0, =Q1'>0, D(Q,)=1.
a.  n*(Q)=0if Q, is diagonal.
b. a*(Q)=1if one of iie following cases applics.

Cuse 1. If q12>0, §13>0, g23>0 and

Ji2q13 12923 F13923
. 4
q23 g3 q12

G10,1).

Case 2. If(]]z >0, 713 =0, 423 =0.
Other cases are derived from the above by permutations of signs and indices.
c.  n*(Q,)=2iff othersise.

For the special casc in which Q, €C**“ and n*(Q,)=1 a charactcrization is given in [6].

PROPOSITION 5.13. Ler (0, G (0,00)*™4. Then n*(Q)=1iff, up to apermutation of indices,

| o= g12913 _ 912914 _ 4nqus €(0,1:

qz3 q24 734

2 2 - 2
2.¢c = (]12‘ ¢ = (]13‘ C = ql4'

Classification. In this subsubscction the classification question 5.5.b will be discussed. Thus, given
0, €R**k_ the question is to classify all decompositions of the form

Qr = QI + Qu

in which rank (Q )= n*(Q,). Geometry sccms the appropriate tool for this classification, in par-
ticular polyhedral concs and convex analysis. FFor an approach along these lines sce [19]. Below
another approach is indicated that combines analysis and geometry.

Remark that in the decomposition

Qr = Ql + Qn = IIQ\!II + Qu‘
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the off-diagonal cleuents of Q arc cqual to the off-diagonal clements of Q,. Morcover, by con-
vention D (Q,)=1. Hence the set Q(Q,,k,n*(Q,)) may be classificd by the diagonal of Q.

ProprosiTiON 5.14. Let
D(Q,.k,n) = {1) CRK XA | D diagonal, — OD(Q,) <D </ rank(D+0D (Q,.))=n},

S B2y, k)= Q(Q,, k), f(D) = (D4 OD(Q,). 1~ D).
Then fis a bijection.
Remark that the sct D(Q,., A,n) without the rank condition is a closed convex sct. From 5.14 and
somc lincar algebra onc obtains the following result on the classification.
THEOREM 5.15. Let O, ER¥*K 0 =01 >0, D(Q,)=1,
D eR"™" | D, diagonal, 0<D <,

3 permutation matrix P such thar if PQ,.P I'= BT

Di(Quhot) = 3 D, +OD(AY>0, Dy:=BY[D,+0D()] 'B—0DO)|

is diagonal and satisfies 0<D, <]

g D0, k,n)—Q(Q,,k,n),
D,+0D(A) B
BT Dy +0D(C)

=D, 0

0 1-D,| P

gy =@’ P, P

Then:
a. giswell defined;
b.  gis surjectivey

C. The diagonal matrix
D, 0
0 D,

is Illli(]ll(’ up to (‘1[)1‘[‘”11[1(7”0”.
The proof of the above theorem is clementary with the aid of the following lemma.

LEMMA 5.16. Let ken€Z , , k>, AR peR" % n ceRk MxXk m g =4T c=¢T,
rank =—n,

A" -4 'B

B
kXA g —
eERE T = [O I

A
= - R/\ Xk.
¢ [11' C <

a. Then

’I""QT = ro -
0C-8B"A B
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b. rank(7)=k.
c. rank(Q)=niff C—BTA 'B=0.
d. Q=0 C-B"4 'B=0.

The study of the classification along the lines sketched above must procced by an investiention of
the following relations for the diagonal matrix D €R"*":

D+ 0D(A)>0,

Dy:=BD;+0D(A)] 'B—0D(C), 0<D,<I, D, is diagonal.
For the cases n*(Q,)=k —1 and n*(Q,)=1 theorem 5.15 directly yields explicit classifications.

The classifications of three low-dimensional examples are listed.

PROPOSITION 5.17. For the case k =2, Q. €R**2, n*(Q,)= 1 with

1
Qv:[(’

q K (]#0,

the classification, in the notation of 5.15, is given by
D(Q,.2.1) = {dl ER, | ¢*<d, < 1}
and

d] q ]“'d] 0
[ >'

g(d'):([q qzldl 0 l—qz/dl

PROPOSITION 5.18. For the case k =3, Q. €(0, w0y X3, and n*(Q,)=2 the clussification according to
5.15 is given by

d’] 0
[0 4| ERY? | dy,dy €[0,1), d1dy — iy 50,

2 2
d1q33 +d2q73 — 291213923
didy—qh
und conditions obtained by permutation of indices

D,(Q,.3.2) = €[0,1]

PROPOSITION 5.19. For the case k =3, 0, €(0, )3 X3, n* (Q,)=1, the decomposition is unique with

d12q13
_‘(123 qi12 q13
q
01~ g9 11292 an
q13
q13923
q13 q23 -
q12 |
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PROPOSITION 5.20. For the case k=4, 0, €(0,00)**, n*(Q,)=2 the classification according to
5.15 is given by

r d] 0 B
0 d,| | 4-42€10.1}, didy g} 0,

733 =d2q13q14 41923924 — €12 14923 — 129139 24,
D(Q,,2) = d2q%3 +d1933 — 2912913923 €[0, 1), .

d1g34 +d3974 —2912914924 €[0,1],
and conditions obtained by permuting the indices

The stochastic realization problem in terms of the internal description

The specification of the Gaussian factor modcl as given in 5.1 will be called the internal descrip-
tion. It is called internal because the specification is in terms of the matrices (H,Q,,Q,,.) rather
than in terms of Q... The questions for the internal desciption require onc definition.

DEFINITION 5.21. The Guussian factor model with representution
v =1Hx +w
is called minimal if n =n*(Q,) in which x:Q—R", Q, >0 and

0, =HQH" + Q,.

Introduce the convention Q, =1. The weak stochastic rcalization problem for a Gaussian factor
model specializes in this casc to the following question.

QUESTION 5.22.

a. Which conditions on the matrices (H,Q.,Q,.) are equivalent with minimality of the Gaussian
Sfactor model?

b.  How are two minimal Gaussian factor models related?

The above qucstions arc still open. The minimality question 5.22.a scems most interesting because
its answer will involve a new system theorctic concept like stochastic observability. To hint at
what may be nceded a special casc is considered.

Consider a special Gaussian factor model of the form

LY EL Y IV
ya| T

in which the variance Q,,. is required to be block-diagonal, in particular it consists of two blocks
only

O, 0
Qn = 0 QO

Onc says that this Gaussian factor modcl is stochastically observable if the map
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xe» E [cxp(i:zY:;' D F]

is injective on the support of x. Similarly onc says that the Gaussian factor modcl is stochastically
reconstructible if the map

x o Elexpiu’yy) [ FY

is injective on the support of x. It may then be proven that the Gaussian factor model is minimal
iff it is stochastically obscrvablc and stochastically reconstructible it rank (//1)=n =rank (/,)
[71].

Let’s rcturn to question 5.22.a, when is a Gaussian factor model minimal in case Q,, is res-
tricted to be diagonal. The following conjecturc comes to mind first: A Gaussian factor model is
minimal iff the map

x m Efexpliuy))| FY), fori €2,

is injective on the support of x for all i €Z,. This conjecture is falsc, because the cffective dimen-
sion 1 of x may be larger than 1. Lven if n =1 it is falsc, sce 5.23 below. The special casc of & =3
and # =2 mentioned in 5.24 shows that the cquivalent condition for minimality of a Gaussian fac-
tor system nceds more thinking. The minimality characterizations for the following special cascs
may be helpful in formulating conjectures for the general result.

PROPOSITION 5.23. Consider a Gaussian factor model
yo=hx ow
withk=2, n=11h €RX. Then this model is minimal iff

3ijezy, is&j, such thar I, 0 and h5=0.

Proor. The Gaussian factor modcl with n =1 is minimal ifl’ the dimension of the factor cannot be
reduced. This is truc iff n* >0 or iff Q.. is non-diagonal. Notc that OD(Q,)= 0D (hh h.o

PROPOSITION 5.24. Consider the Gaussian factor model of 5.1 with k =3, n =2,

il

1
1
H = |} eR3>*2, D)=
2 4
3

=

h

Assume that h{hy >0, h{h3>0, hih3>0. Then this Gaussian Sfuactor model is minimal iff one of the
Sollowing conditions is sutisfied:
(hThy)h{hy)
(hihy)
B ing
7 &[0,1},
(hihs3)
GUBIS)
Orihy)

(0,11,

(0,1
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Proor. This follows from 5.12. O

Classification of internal description

The motivating question here is whether the internal description of a Gaussian factor model is
uniquely determined by the variance of the obscrvation vector. In general such a model is not
unique. This question is related to question 5.5.b. For the classification of the internal description

of factor analysis modcls with block-diagonal structurc scc [53]. To structure the discussion a
dcfinition is introduced.

DEFINITION 5.25. Two Gaussian Sactor models
y=IHlx+w

and

y = HX 4w
are culled cquivalent if

HQHT + Q, = 11Q:1 + Q,.

Note that the two Gaussian factor models of 5.25 that arc defined to be cquivalent both have the
samc variance matrix (,, since

Qy = IIlQ.\‘,II'lr + Qn', = ]{ZQ&]{{ + Qu'z'

Thercfore they cannot be distinguished given Q,. Itis well-known that if (n,1,0,,0,) are the
paramcters of a Gaussian factor system and if S €R”*” is an orthogonal matrix (SS7=1), the
two Gaussian factor models specified by (1,/,0,,0,) and (1,115,570.8,0,) arc cquivalent.
However, there may be other ways in which two Gaussian factor modcls are cquivalent.

In applications of Gaussian factor analysis it has been recognized that there may be many
cquivalent models. To reduce the class of equivalent models practitioners fix certain elements of
the matrix of factor loadings, based on prior knowledge about the obscrvation vector or arbi-
trarily.

The qucstion now is, given a Gaussian factor modcl, to describe the equivalence class of all
Gaussian factor modcls that are cquivalent with the given one. This question is still open.

6. GAUSSIAN FACTOR SYSTEMS
The purposc of this scction is to formulate the concept of a Gaussian factor system and to survey
the preliminary results of the stochastic realization problem for this class of systems.

A motivation for the study of this class of systems is the stochastic realization problem for
Gaussian systems with inputs. One would like to know whether it is possible to determinc from an
obscrved vector-valued process which components are inputs and which are outputs of 2 Gaussian
system. Another motivation for the study of this class of systems is the cxploration of the exten-
sion of Gaussian factor modcls to dynamic systems.

DEFINITION 6.1. A Gaussian factor system, in discrete time, is an object specified by the equations
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x(t+1) = Ax(t) + Bu(?),
y(t) = [Cx(t) + Du(@®)] + w()
or

y() = X H{E—s)u(s) + w(r)
sel
where u:Q X T—RP is a stationary Gaussian process called the factor process, w 12X TR is a sta-
tionary Gaussian process called the noisc process, y:QXT—R* is called the observed proccss,
uwy,...,wy are independent processes, the spectral densities of u,w, . .., wy are rational functions,
and the Fourier transform of the transfer function 1 is rational and causal.

A Gaussian factor system is said to have the factor property if the processes u,wy, ..., wy arc
independent processes. This condition can also be rephrased in terms of conditional independence
but this will not be donc here. Note that the processes w, ..., uy nced not be white noise
proccsscs.

Concepts similar to that of a Gaussian factor system have been introduced in the litcrature.
An clementary version of a Gaussian factor system with / a constant matrix is introduced in [58).
In [26] a Gaussian factor system is dcfined without the rationality and causality conditions. In [21]
one can find the definition 6.1 and a generalization. In [54] a gencralization of 6.1 is picsented in
which the spectral density of the process w is not diagonal but block-diagonal and in which the
transfer function // not be causal. The term dynamic errors-in-variables systems is uscd instcad of
Gaussian factor system in the publications of B.D.O. Andcrson and M. Deistler [4-6, 16, 17]. An
interpretation of this term follows.

Consider a deterministic finite-dimensional lincar system in impulsc response representation

T = S —s)uls).

serl
Supposc that the variablces of input uand ourput_f' of this system arc obscrved with crrors or noise,
say by
u(t) = a(ry + wi@e), » (@) = p@r) + wy(r),

in which w,n; arc independent Gaussian white noisc processcs. Combining these cxpressions
onc obtains

u(t)) _ 18(1 ~s) w(r)
(0] = | S Zofre+ )

seT
which is a Gaussian factor system except for the fact that the spectral density of the noisc is not a
diagonal function but block-diagonal with two blocks. The interpretation of the above defined
system of which the variables arc observed with crror, illustrates the term errors-in-variables
modcl.

PROBLEM 6.2. The weak stochastic realization problem for a Gaussian factor system is to solve the
Sollowing subproblems. Assume given a stationary Gaussian process with zcro meuan function and
covariance function Q or spectral density (}

a.  Find conditions under which there exists a Gaussian factor system
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YW= JH@E—s)u(s) + w()

sCT

such that the spectral density of y equals the given spectral density, or

- " An =T -

Q= Qr = HQH + Q.
If such a Gaussian factor system exists then it is called a weak stochastic realization of the
given process. . '

b, Classify all iminimal weak stochastic lL’fI[l..CIllOllS of the given process. A weak stochastic realiza-

tion is called minimal if rank (HQ,,II ) is minimal,

A difficulty with the above defined problem is the definition of minimality. In addition to the
concept defined in 6.2, which is mlmmahty of t thc dimension of the factor process u, one could

also consider minimality of the degree of HQ,,H . From a viewpoint of linear systcm thcory the
latter concept would be preferable. Possibly a mixture of both the dimension of the factor process
and the degree has to be considered. Because of this difficulty the author of this paper is not yet
convinced that a Gaussian factor system is a suitable model for cconomic and cngincering prac-
tice. Howcever, what may be of intercst is the special case in which the spectral density of the noise
is block-diagonal with two blocks.

The weak stochastic realization problem for Gaussian factor systems is unsolved. Only for
low-dimensional cases have results been published. For the case of an obscrved process with two
components scc [4, 18,33] and for the case with three components sec [6, 18]. A discussion of the
problem may be found in [17]. Questions of identifiability and problems of paramcter cstimation
for Gaussian factor systems have been discussed in [21, 26).

A strong version of the weak stochastic realization problem of 6.2 has been proposed in [54];
scc also [55]. The casc in which the spectral density Q. of thc noisc consists of two diagonal
blocks has been treated there.
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